\qquad Date:

KIPP NYC College Prep Chemistry

UNIT 1: Introduction to Matter

Lesson 7: When one substance looks and acts differently

By the end of today, you will have an answer to: What makes something a solid, liquid, or gas?

Do Now:

1. A student is filtering a mixture of sand and salt water into a beaker. What will be found in the beaker after the filtration is completed?
(1) sand, only
(2) salt, only
(3) sand and salt
(4) salt and water
2. Which physical property makes it possible to separate the components of crude oil by means of distillation?
(1) melting point
(2) conductivity
(3) solubility
(4) boiling point
3. Classify each as an element, compound, or mixture. Be prepared to explain why.

LET'S THINK ABOUT THIS:
Think about punching your hand through either the air, water or a desk. Which substance would you feel the most resistance? Least resistance?

Most resistance:
Least resistance: \qquad

Considering this fact, what do you think about the atomic arrangement in these items. In other words, do you think that the atoms are close together or far apart? How do you know?

You should know this, but let's review anyway!

Melting Point	The temperature at which a substance goes from a solid to a liquid.
Boiling Point	The temperature which a substance goes from a liquid to a gas.

***Important Point: STP = Standard Temperature and Pressure.
These values help scientists measure at normal conditions. Standard Temperature: \qquad
Find on Table A. Record values to the right Standard Pressure:

Example question:

A substance has a melting point of 230 K and a boiling point of 769 K .
Think about it as a number line:

What state of matter is this substance in at:
a) 300 K \qquad b) 100 K \qquad e) STP \qquad
c) 1000 K

	SOLID	LIQUID	GAS
Definite shape?			
Definite volume?			
Notation/ Symbol			
Characteristics	- Tightly packed atoms - Very organized - Geometric pattern - Strong intermolecular forces	- Weaker intermolecular forces - Not very organized - Particles can move around	- Particles fill up entire space - Very weak intermolecular forces - Particles move around very fast in straight lines
Particle Diagram			

Practice Questions:

Work hard. Be nice.

Name: \qquad
KIPP NYC College Prep
CW 1.10- States of Matter

Pd: \qquad Date: \qquad
General Chemistry 10 points

| Question | Explanation of Answer |
| :--- | :--- | :--- |
| 1.
 Draw a particle model showing at least six particles
 for a solid and gas using the key below:
 One particle | KEY WORDS AND SYMBOLS: |
| Solid | EXPLANATION: |

\qquad
\qquad Date: \qquad
KIPP NYC College Prep
General Chemistry 20 points
HW 1.7-States of Matter
BE SURE TO CLEAN UP YOUR BINDER! Binder quiz is coming soon!

REGENTS PRACTICE: [5 points]

1. As a substance changes from a liquid to a gas, the average distance between molecules
(1) Decreases
(2) Increases
(3) remains the same
(4) none of the above
2. At STP, fluorine is a gas and iodine is a solid. This observation can be explained by the fact that fluorine has
(1) weaker intermolecular forces of attraction than iodine
(2) stronger intermolecular forces of attraction than iodine
(3) lower average kinetic energy than iodine
(4) higher average kinetic energy than iodine
3. Which of the following does not have definite shape but has definite volume?
(1) Solid
(2) Liquid
(3) Gas
(4) Colloid
4. At which Celsius temperature does lead change from a solid to a liquid?
(1) $874^{\circ} \mathrm{C}$
(2) $601^{\circ} \mathrm{C}$
(3) $328^{\circ} \mathrm{C}$
(4) $0^{\circ} \mathrm{C}$

CRITICAL THINKING: [5 points]

Two students are arguing over what the particle diagram of a gas looks like for oxygen in a bottle. Chanelle argues that a gas in a bottle looks like bottle A below while Adriana argues that a gas in a bottle looks like bottle B below. Who is correct and why? Give examples to support your ideas!

Bottle A

Bottle B

Glossary: [5 points]
Add the following words to your glossary sheets:

- Melting point
- Boiling Point
- Solid
- Liquid
- Gas

Continue on the back...

Compare the arrangement of individual particles in solids, liquids and gases:

IT MAY LOOK HARD, BUT IT'S ACTUALLY REALLY AN EASY QUESTION:

Test-taking Strategy:

1) Before reading the passage, skip to the end of the second paragraph and underline the two sentences that tell you to do something and tell you what information your answer must include.
2) Read the paragraphs. If there is important information, annotate it.

Propane is a fuel that is sold in rigid, pressurized cylinders. Most of the propane in a cylinder is liquid, with gas in the space above the liquid level. When propane is released from the cylinder, the propane leaves the cylinder as a gas. Propane gas is used as a fuel by mixing it with oxygen in the air and igniting the mixture, as represented by the balanced equation below.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2219.2 \mathrm{~kJ}
$$

A small amount of methanethiol, which has a distinct odor, is added to the propane to help consumers detect a propane leak. In methanethiol, the odor is caused by the thiol functional group (-SH). Methanethiol, CH3SH, has a structure that is very similar to the structure of methanol. Draw a particle diagram to represent propane in a pressurized cylinder using the key in your answer booklet. Your response must include at least six molecules of propane in the gas phase and at least six molecules of propane in the liquid phase. [1]

5. Write a multiple choice question below that is ACCURATE that uses this question stem: "Which element is a liquid at \qquad K?". You must also create four multiple choice options of elements, one of which is the correct answer.

Work hard. Be nice.

Name: \qquad Pd: \qquad Date: \qquad
KIPP NYC College Prep General Chemistry
Exit Ticket Quiz 1.7: States of Matter
Directions: Answer all questions based on your knowledge of chemistry.

1. In which sample are the particles arranged in a regular geometric pattern?
(1) $\mathrm{HCl}(\mathrm{I})$
(2) $\mathrm{NaCl}(a q)$
(3) $\mathrm{N}_{2}(g)$
(4) $\mathrm{I}_{2}(s)$
2. Under the same conditions of temperature and pressure, a liquid differs from a gas because the particles of the liquid
(1) are in a constant straight line motion
(2) take the shape of the container they occupy
(3) have no regular arrangement
(4) have stronger forces of attraction between them
3. Which 5.0-milliliter sample of NH_{3} will take the shape of and completely fill a closed 100.0 -milliliter container?
(1) $\mathrm{NH}_{3}(s)$
(2) $\mathrm{NH}_{3}(l)$
(3) $\mathrm{NH}_{3}(g)$
(4) $\mathrm{NH}_{3}(a q)$

Name: \qquad Pd: \qquad

KIPP NYC College Prep
Exit Ticket Quiz 1.7: States of Matter

Date:
General Chemistry
3 points

Directions: Answer all questions based on your knowledge of chemistry.

1. In which sample are the particles arranged in a regular geometric pattern?
(1) $\mathrm{HCl}(\mathrm{I})$
(2) $\mathrm{NaCl}(a q)$
(3) $\mathrm{N}_{2}(g)$
(4) $\mathrm{I}_{2}(s)$
2. Under the same conditions of temperature and pressure, a liquid differs from a gas because the particles of the liquid
(1) are in a constant straight line motion
(2) take the shape of the container they occupy
(3) have no regular arrangement
(4) have stronger forces of attraction between them
3. Which 5.0-milliliter sample of NH_{3} will take the shape of and completely fill a closed 100.0-milliliter container?
(1) $\mathrm{NH}_{3}(s)$
(2) $\mathrm{NH}_{3}(l)$
(3) $\mathrm{NH}_{3}(g)$
(4) $\mathrm{NH}_{3}(a q)$
